VA

.
s LonLuamos

LA-UR-15-27724

Approved for public release; distribution is unlimited.

Title: Portable Data Parallel VisualizaOon Algorithms with VTK-m

Author(s): Lu, Kewei
Canada, Curtis Vincent

Intended for: Web

Issued: 2015-10-05




Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Portable Data Parallel Visualization
Algorithms with VTK-m

Kewei Lu

N RETEE:
- IRAIamos

NATIONAL LABORATORY
UNIVERSITY




VTK-m

* A toolkit of scientific visualization algorithms
for emerging processor architectures

* Support the fine-grained concurrency for data
analysis and visualization algorithms by
providing abstract models for data and
execution

e Can be run across many different processor
architectures



VTK-m Architecture

Data Model
Worklets
Data Parallel Algorithms



My job this summer

* Based on the current implementation of VTK-
m, write different visualization filters:

— Streamline
— Stream Surface
* Change the original isosurface

implementation using the new data model
and worklets in vtk-m

 Measure the performance of those
visualization algorithms



Streamline

* Acurve traced from a
particle inside the flow
field

e A common method
used to visualize and
analyze vector fields

* Computation

— Particle tracing
algorithm

— The fourth-order Runge-
Kutta Algorithm




Previous Parallel Streamline Strategies

Parallel Over Blocks Parallel Over Seeds




VTK-m implementation —
Streamline(1)

e Adopt parallel-over-seeds approach(map by
seeds)

e Algorithm:
— Read the vector field
— Randomly generate N seeds

— Allocate memory for the output streamline
buffer(N*maxSteps if only integrate in one direction
or N*maxSteps™*2 if integrate in both directions)

— Parallel particle tracing
— Write the results



VTK-m implementation —
Streamline(2)

* Parallel particle tracing

vtkm::cont::ArrayHandle<vtkm::1d> successArray;
int totalNumParticles=numSeedsxmaxStepsx2;
vtkm: iworklet::DispatcherMapField<FieldLineFunctorUniformGrid<FieldType, OutputType> >
fieldLineFunctorDispatcher(FieldLineFunctorUniformGrid<FieldType, OutputType>(t, maxSteps, dim,
fieldArray.PrepareForInput(DeviceAdapter()), seedsArray.PrepareForInput(DeviceAdapter()),
slLists.PrepareForQutput(totalNunParticles, DeviceAdapter())));
fieldLineFunctorDispatcher. Invoke(seedIdArray, successArray);



VTK-m Performance — Streamline(1)

* Machine: Nvidia partition on Darwin

* Parameters:
— 100 seeds
— 2000 steps

 Cuda Timing: 2.85658 sec



VTK-m Performance — Streamline(2)

* TBB and OpenMP backend

TBB Comp. TBB Ideal Scaling

10 O OpenMP Comp. OpenMP ldeal Scaling
1 O

Q
@ h
(D - ™

0.1 \  — py )

0.01
1 2 4 8 16 32 64

Num Threads

10



VTK-m Results — Streamline

e Results

=)
5

30

20

10

40

11



Stream Surface

e A stream surface is defined as a surface traced
from a seeding curve inside the flow field

e Stream surface
visualize flow fi

“Q

T~——

Hurricane Isabel




Stream Surface

e Stream surface
— The union of an infinite

number of streamlines N
* Front-advancing NIX
algorithm: TN >
— The seeding curve is Lkl 15 .
discretized K\ l’r>ﬁ
— Diverge Flow Surface front
* Insert new seeds fW

— Converge Flow
* Delete seeds Seeding curve



VTK-m implementation - Stream
Surface (1)

e Goal: A data parallel stream surface algorithm
In VTK-m

e Stream surface algorithm:

— For i from 1 to maximum steps:
1. Advection
2. Time line refinement

— Triangulation



VTK-m implementation - Stream
Surface (2)

* Advection
— Map by seeds

vtkm::worklet::DispatcherMapField<RK4FunctorUnifornGrid<FieldType, OutputType> >
fieldLineFunctorDispatcher  (RK4FunctorUniformGrid<FieldType, OutputType>(t_, g_dim,
fieldArray.PrepareForInput (DeviceAdapter())));

fieldLineFunctorDispatcher, Invoke(seeding_curve_array, next_time_line_array);

15



VTK-m implementation - Stream

Surface (3)

 Refinement
— Scatter the new generate particles to current surface

front
— Remove particles from current surface front
— Algorithm:
1. Compute the insert and remove decision array
2. Compute the number of particles on the current surface
front after refinement -- allocate space for the output buffer
3. Compute the decision of every particle on the current
surface front, keep the particle or not
4. Compute the offset of each particle that need to be kept in
the output buffer
5. Scattering
6. Sort based on particle ID



VTK-m implementation - Stream

Surface (4)

e Step 1l
— Map by every three
particles(b,b,b,, b,b,b;, b,b;b,)
and the last two seeds(bsb,) ¢

* For every three particles(b, ;b.b.,,) b4
— Whether insert particle between b, ;
and b, and whether remove seed b, C, C, C, G D, D, D, D,
* For the last two particles 1 0 0 O 0 1 1 0
— Whether insert particle in between
— Two Decision Array: D, D, D, D,
* 0: none O 1 2 O
* 1:insert or remove
— TimelLineRefinementFunctor Dy D; D, D
O 1 0 O




VTK-m implementation - Stream
Surface (5)

2. Compute the number of particles
on the current surface front after
refinement -- allocate space for the
output buffer

— ScanExclusive on the the two decision
array which returns the number of
particles to be inserted M and the number
of particles to be removed N

— The length of current surface front after
refinement = the length of current surface
front+ M - N

3. Compute the decision of every
particle on the current surface front,
keep the particle or not
— Dy->b,, always 1
- b 2 bi+1
« 1-D,

b,
G, ¢ C G D, D; D, D,
1 0 0 O 0O 1 0 O
5+1-1=5 by by b, by by
1 1 0 1 1




VTK-m implementation - Stream
Surface (6)

4. Compute the offset of each particle
hat need to be kept in the output buffer bo by by by by “ G 6
that need to P P 1 10 1 1 1 0 0
— ScanExclusive on array Band C
b, b, b, b; b, G ¢ G
. O 1 2 2 3 0O 1 1
5. Scattering
— Merge array B and C based on decision and
offset o o o o
— MergeToRefinedFunct 0 1 3 4 “
ergelonennedrunctor 00 025 075 1.0 0.125

6. Sort based on particle ID
- b, ¢ b, by b,

vtkm::cont::DeviceAdapterAlgorithm<Devic
eAdapter>::SortByKey




VTK-m implementation - Stream
Surface (7)

* Triangulation
— Input: A number of time lines
— Output: Triangle
mesh(connectivity)
* Mapping
— Map by every pair of time lines

— How many triangles each pair will
generate?
 Where to write in the output buffer

* Suppose one has p, particles and the
other one has p, particles

- po+p1'2



VTK-m implementation - Stream
Surface (8)

* Triangulation

— Bottom line

* For every two particle, o 04 o
figure out which particleon *;
the top line should be
connected F &

L 0.2 0.4 0.6

— Connect to the top particle 0.0 08
with particle id bigger or
equal to the right particle in
the bottom line



VTK-m implementation - Stream
Surface (9)

* Triangulation

— Top line
* For every two particle,
figure out which 0.0 > > >
particle on the bottom !
line should be |
connected = 0z os os
0.0 0.8

— Connect to the bottom
particle with particle
id smaller or equal to
the left particle in the
top line



VTK-m Performance - Stream Surface

* Machine: Nvidia partition on Darwin

* Parameters:
— 10 seeds
— 250 steps

 Cuda Timing: 6.48537 sec



VTK-m Performance - Stream Surface

* TBB and OpenMP backend

TBB Comp. TBB Ideal Scaling
10 © OpenMP Comp. OpenMP Ideal Scaling

1

c oY A O r

o

g 01
0.01

1 2 4 8 16 32 64

Num Threads

24



VTK-m Results - Stream Surface

e Results

\

\

)

W

N

Y

\j
N
yh

W

\
\
i

M
|

|

»m_;?w
:4 ’
4»4474%%»«%
NN

41

\N
N
W

16

15

14

13

12

35

30

25

20

15

10

25



VTK-m implementation — Isosurface(1)

* Original Algorithm: without new data model
and topology worklet
1. Read Data
2. Classify Cell

e Determine the case number for each cell
3. Determine which cell is valid

4. Compute the write buffer offset for each valid
cell

5. Compute vertices, normal etc.



VTK-m implementation — Isosurface(2)

* New things in VTKm
— A new DataSet class
— A new WorkletMapTopology class

* Rewrite the isosurface algorithm using these
two new classes



VTK-m implementation — Isosurface(3)

* New algorithm:
1. Read Data to DataSet class

MakeDataSet<FieldType> make_ds(dim);
vtkm::cont::DataSet ds;
if (fileName !'= 0)

ds = make_ds.Make3DRegularDataSet@(fileName);
else

ds = make_ds.Make3DRegularDataSeto();

2. Classify Cell

e Determine the case number for each cell

e Using the new DataSet and WorkletMapTopology

class

vtkn:scont: :ArrayHandleCount ingevtkn: 1d> cellCountInplicitArray(0, dind);

vtkn: sworklet: :DispatcherMapTopotogy<ClassifyCell> classifyCellDispatcher(ClassifyCell(vertexTableArray.PrepareForInput (DeviceAdap
ter()), isovalue, verticesPerCellArray.PrepareForOutput(din3, DeviceAdapter()) ));

vtkm::cont::Field f1("outcellvar", 1, vtkmi:cont::Field::ASSOC_CELL_SET, std::string("cells"), vtkm::Float32());
ds.AddField(f1);

classifyCellDispatcher.Invoke(ds.GetField("cellvar").GetData(), ds.GetField("nodevar").GetData(), cs->GetNodeToCellConnectivity(), 78
ds.GetField("outcellvar").GetData());



VTK-m implementation — Isosurface(4)

3. Compute the write buffer offset for every

cell
insigned int nunTotalVertices = vtkn::cont::DeviceAdapterlgorithncUTKN_DEFAULT DEVICE_ADAPTER_TAG>::ScanExclusive(verticesPerCell
Array, cellIndiceshrray);

4. Compute vertices, normal etc.

— Using the new DataSet and
WorkletMapTopology class

vtkm::cont::ArrayHandle<vtkm: :Float32> cellCaseIndex = ds.GetField("outcellvar").GetData().CastToArrayHandle(vtkm: :Float32(),VTKM_DEFAULT_STORAGE_TAG ());
vtkm: :worklet: :DispatcherMapTopology<IsosurfaceFunctorUnifornGrid<FieldType, OutputType> > isosurfaceFunctorDispatcher(IsosurfaceFunctorUnifornGrid<FieldType, OutputType>
(isovalue, vdims, mins, maxs,

cellIndicesArray.PrepareForInput (DeviceAdapter()),
verticesPerCellArray.PrepareForInput(DeviceAdapter()),
cellCaseIndex.PrepareForInput(DeviceAdapter()),
triangleTableArray.PrepareForInput (DeviceAdapter()),
verticesArray.PrepareForOutput (numTotalVertices,DeviceAdapter()),
normalsArray.PrepareForOutput(nunTotalVertices, DeviceAdapter()) ));

vtkm::conti:Field f2("outcellsucess”, 1, vtkm:icont::Field::ASSOC_CELL_SET, std::string("cells"), vtkm::Float32());

ds.AddField(f2);
isosurfaceFunctorDispatcher. Invoke(ds.GetField("cellvar").GetData(), ds.GetField("nodevar").GetData(), cs->GetNodeToCellConnectivity(), ds.GetField("outcellsucess").GetDa

ta());

29



VTK-m Performance - Isosurface

* Machine: Nvidia partition on Darwin

* Parameters:
— Data size: 200X200X200
— Isovalue: 0.5

* Cuda Timing: 0.029479 sec



VTK-m Performance - Isosurface

* TBB and OpenMP backend

TBB Comp. TBB Ideal Scaling
100 © OpenMP Comp. OpenMP Ideal Scaling

100 S
($) \
0.1 - - ~ - - - -
1 2 4 8 16 32 64

Num Threads

31



Summary

e Streamline and Stream Surface filters for vtkm

* Rewrite the isosurface filter using the new
data model and worklet

e Performance measurement



Acknowledgement

* Mentor: Christopher Sewell and Li-Ta Lo
e James Ahrens, Curtis Canada, Erika Maestas



